Yahoo Search Búsqueda en la Web

Resultado de búsqueda

  1. Adrien-Marie Legendre (francés: /adʁiɛ̃ maʁi ləʒɑ̃ːdʁ/; 18 de septiembre de 1752-10 de enero de 1833), fue un destacado matemático francés. Otorgó importantes contribuciones a la estadística, a la teoría de números, al álgebra abstracta y al análisis matemático.

  2. Adrien-Marie Legendre fue el primero en dedicar una obra estrictamente a la teoría de números (Théorie des nombres, aparecida en 1830), ámbito en el que obtuvo resultados fundamentales como la demostración de la ley de la reciprocidad cuadrática.

  3. En general la serie de potencias obtenida converge cuando | x | < 1 y en el caso particular de que n sea un entero no negativo (0, 1, 2,...) las soluciones forman una familia de polinomios ortogonales llamados Polinomios de Legendre . Cada polinomio de Legendre P n ( x) es un polinomio de grado n.

  4. Adrien-Marie Legendre ( / ləˈʒɑːndər, - ˈʒɑːnd /; [3] French: [adʁiɛ̃ maʁi ləʒɑ̃dʁ]; 18 September 1752 – 9 January 1833) was a French mathematician who made numerous contributions to mathematics. Well-known and important concepts such as the Legendre polynomials and Legendre transformation are named after him.

  5. 30 de oct. de 2022 · Los polinomios de Legendre, o funciones de Legendre del primer tipo, son soluciones de la ecuación diferencial \(^{1}\) Adrien-Marie Legendre (1752-1833) fue un matemático francés que hizo muchas contribuciones al análisis y álgebra. \[\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0\nonumber \]

  6. 30 de oct. de 2022 · Así, obtenemos soluciones polinomiales. Estas soluciones polinómicas son los polinomios de Legendre, que designamos como \(y(x)=P_{n}(x)\). Además, para \(n\) un entero par, \(P_{n}(x)\) es una función par y para \(n\) un entero impar, \(P_{n}(x)\) es una función impar. En realidad, esta es una versión recortada del método.

  7. Summary. Adrien-Marie Legendre's major work on elliptic integrals provided basic analytical tools for mathematical physics. He gave a simple proof that π is irrational as well as the first proof that π2 is irrational. View two larger pictures.

  1. Otras búsquedas realizadas