Yahoo Search Búsqueda en la Web

Resultado de búsqueda

  1. Every subshell has a # of orbits s/p/d/f that can each hold 2 electrons each (one has the opposite spin of the other). The first shell (of all atoms) has 1 subshell of s-orbitals containing 1 s orbital. This means that the first shell can hold 2 electrons. The second shell has 2 subshells: 1 s-orbital and 3 p-orbitals.

  2. In quantum mechanics, an atomic orbital (/ ˈ ɔːr b ɪ t ə l /) is a function describing the location and wave-like behavior of an electron in an atom. This function describes the electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region ...

  3. An atomic orbital is characterized by three quantum numbers. The principal quantum number, n, can be any positive integer. The general region for value of energy of the orbital and the average distance of an electron from the nucleus are related to n. Orbitals having the same value of n are said to be in the same shell

  4. Orbitals with l = 3 are f orbitals, which are still more complex. Because its average distance from the nucleus determines the energy of an electron, each atomic orbital with a given set of quantum numbers has a particular energy associated with it, the orbital energy.

  5. Orbitals and orbits. When a planet moves around the sun, its definite path, called an orbit, can be plotted. A drastically simplified view of the atom looks similar, in which the electrons orbit around the nucleus. The truth is different; electrons, in fact, inhabit regions of space known as orbitals.

  6. What do orbitals look like? There are four different kinds of orbitals, denoted s, p, d, and f, each with a different shape. Of the four, we’ll be concerned primarily with s and p orbitals because these are the most common in organic and biological chemistry.