Yahoo Search Búsqueda en la Web

Resultado de búsqueda

  1. En matemáticas, en el análisis de ecuaciones diferenciales ordinarias, las funciones de Legendre son las soluciones de las ecuaciones diferenciales de Legendre : llamadas así en honor del matemático francés Adrien-Marie Legendre. Estas ecuaciones se encuentran frecuentemente en Física.

  2. Los polinomios de Legendre son uno de un conjunto de polinomios ortogonales clásicos. Estos polinomios satisfacen una ecuación diferencial lineal de segundo orden. Esta ecuación diferencial ocurre naturalmente en la solución de problemas iniciales de valores límite en tres dimensiones que poseen cierta simetría esférica.

  3. 5 de mar. de 2018 · Publicada el marzo 5, 2018 por Fernando Revilla. Estudiamos la ecuación de Legendre. Enunciado. Se llama ecuación de Legendre a la ecuación diferencial ( 1 − x 2) y ′ ′ − 2 x y ′ + α ( α + 1) y = 0 ( L) con α real. Demostrar que la ecuación de Legendre se puede escribir en la forma ( ( x 2 − 1) y ′) ′ = α ( α ...

  4. Notas de Clase Ecuacion de Legendre 2.2. La ecuacion en y ’ Para la funcion Y( ;’) la ecuaci on diferencial es 1 sin( ) @ @ sin( ) @Y @ + 1 sin2( ) @2Y @’2 + ‘(‘+ 1)Y(’; ) = 0 Si efectuamos el cambio de coordenadas ˘= cos( ) tendremos que las derivadas las podemos escribir: @Y @ = sin( ) @Y @˘ @2Y @ 2 = cos( ) @Y @˘ + sin2( ) @2Y ...

  5. Polinomios de Legendre. Una variedad de las funciones especiales que se encuentra en la solución de problemas físicos es la clase de funciones llamadas Polinomios de Legendre. Son la solución a una ecuación diferencial muy importante llamada ecuación de Legendre: Los polinomios se indican por medio de P n (x) , llamados

  6. Los polinomios de Legendre son soluciones de esto y ecuaciones relacionadas que aparecen en el estudio de las vibraciones de una esfera sólida (armónicos esféricos) y en la solución de la Ecuación de Schrödinger para átomos similares a hidrógeno, y juegan un papel importante en la mecánica cuántica.

  7. Así hemos demostrado que \(\frac{d^n}{dx^n}(x^2-1)^n\) satisface la ecuación de Legendre. La normalización se desprende de la evaluación del coeficiente más alto, \[\frac{d^n}{dx^n} x^{2n} = \frac{2n!}{n!} x^n, \nonumber \] y así necesitamos multiplicar la derivada con \(\frac{1}{2^n n!}\) para obtener la normalizada correctamente \(P_n\).

  1. Búsquedas relacionadas con ecuaciones de legendre

    ecuaciones de legendre y polinomios de legendre